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This paper reports the formulation of theories of nonhomogeneous kinetics based on the independent pairs
approximation for systems where geminate recombination competes with scavenging by a (cylindrical model)
macromolecule. The theory describes the spatial distribution of hits on the cylinder and is tested by comparison
with Monte Carlo random flights simulation. The kinetics, the hit distribution, and the distribution of the
separation between successive hits modeled by the independent pairs theory are in good agreement with the
simulations. Some discrepancies are found, which originate from a three-body correlation effect. The origin
of this effect, which may be important in understanding radiation damage in biological systems, is discussed
in detail.

1. Introduction

When a fast electron passes through a liquid, it leaves a track
consisting of very reactive free radicals and ions in a highly
clustered spatial distribution.1 The subsequent transient chem-
istry reflects the relaxation of this distribution. Theories of
radiation-chemical kinetics must take account of two features
of the radiation track: first, the microscopic nonhomogeneity
of the particle distribution within the clusters, commonly termed
spurs, and second, the small number of particles contained in
each spur. The combination of these two effects poses
challenging theoretical problems. Recently, stochastic simula-
tion techniques and theories have been developed, helping to
elucidate the physical,2,3 physicochemical,4,5 and chemical6-8

processes of radiolysis.
In a complex system, a spur may be formed in close proximity

to a larger structure, such as a macromolecule or a surface. This
introduces competition between recombination in the spur,
reaction with any scavenger present, and scavenging by reaction
with the heterogeneous moiety. Not only is the chemistry
affected by the presence of the structure, but the spatial
distribution of hits may also be important. For example, in
radiation biology, two reactions of free radicals with a DNA
molecule in close proximity may lead to a double-strand
break.9,10

The kinetics of reaction with a macroscopic structure and
the spatial distribution of the sites of reaction depend strongly
on the geometry of the structure. Several different geometries
are of interest, including a sphere, an ellipsoid, a cylinder, a
plane surface and a string of spheres. Many of these have been
used in the literature to model free radical attack on, or energy
deposition in, a macromolecule such as DNA.11,12 The studies
performed to date can be classified into three broad categories:
(1) physical modeling of energy deposition events on DNA;11

(2) rate constants for reaction between a macromolecule and a
homogeneous concentration of free radicals;13,14and (3) Monte
Carlo simulations of chemical attack by free radicals in the
track.12 These theoretical studies provide complementary

information to experimental data on the chemical nature of
radiation damage.
Monte Carlo simulations generally represent an attempt to

model as accurately as possible the processes taking place in
the radiation track and show many interesting effects at a
qualitative level. Appropriate and accurate simulations contain
much more detailed information about the competing physical
and chemical processes than can be obtained experimentally,
and a great deal can be learned from a detailed analysis of these
simulations. For example, it is possible to analyze the spatial
distribution of hit positions and its relationship with the initial
configuration of the reactants in the track relative to the
macromolecule. Unfortunately, as there remain many uncer-
tainties about the details of the processes involved and conse-
quently about the input parameters, it is unlikely that any Monte
Carlo simulation can be quantitatively correct at present. Of
course, the same is true of all other theoretical approaches which
make approximations.
Experimental studies of the kinetics of free radical attack on

DNA have led to attempts to find a pragmatic parametrization
that can describe these kinetics acceptably. These studies have
generally involved the use of kinetic rate equations with
modified rate constants for the radical+ DNA reaction, and
for this purpose it is necessary to approximate the DNA to some
simple geometrical figure, such as a cylinder or a sphere.13,14

In recent years, it has been realized that nonhomogeneous
kinetics in a radiation track do not obey simple rate laws,15 and
microscopic stochastic theories have been developed. These
theories provide a more accurate description of the diffusion
and reaction in a track than conventional theories because they
recognize the individual nature of the reactive particles. The
aim of this paper to formulate stochastic theories for systems
where there is competition between recombination and scaveng-
ing by a large cylindrical structure. A similar study of a plane
surface showed interesting correlation effects, both for the
recombination kinetics and the spatial distribution of reactions
with the surface.16 In view of the importance of radical attack
on macromolecular structures, such as DNA, it is of interest to
investigate whether similar correlations are likely to arise when
a cylindrical target is considered.
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All analytical theories of many-body diffusion-reaction
problems, such as the competition between recombination and
reaction with a macromolecule, make approximations. For
example the Smoluchowski-Noyes treatment of diffusion-
limited kinetics relies upon the independent pairs approxima-
tion.17,18 It is this approximation that breaks down in the
competition between recombination and scavenging by a plane
surface.16 In this paper, a Monte Carlo simulation technique is
used to test the accuracy of the independent pairs approximation,
both for the simulated kinetics and for the spatial distribution
of the hits on the macromolecule. Since the aim is to test the
independent pairs approximation and alternative formulations
in the literature,13,14which employ an idealized cylindrical model
of the macromolecule, a similar model has been used. Although
the model is crude, it is possible to use it to investigate spatial
correlation effects that would be much harder to find and analyze
for a more realistic representation of the molecular structure,
where other features and complexities are present. For example,
in a cylindrical geometry, it is easy to measure the distance
between two hits in the axial direction whereas in a more
complex model there may be no such unique measure. The
problem of determining whether a double-strand break takes
place in DNA is more complicated than simply considering the
axial distance between two hits, even in a simple cylindrical
model. The helical structure of DNA means that the occurrence
of a double-strand break, or a more complex damage site, will
depend simultaneously on both the axial and the angular
coordinates of the hits. The simulations reported in this paper
could easily be analyzed in a manner that enables this to be
modeled. One possibility would be to simulate the joint density
of the position and angle of the hits or the differences between
the z-coordinates and theθ coordinates of pairs of hits. This
means at a minimum simulating a two-dimensional probability
distribution, and the statistics are much worse than those of
simulating a single variable, requiring one order of magnitude
more computational resources for comparable precision. The
statistical problem could be alleviated by taking a more discrete
view and simply asking which nucleoside is hit, rather than
recording the coordinates of the hit. Such an analysis has the
disadvantage that it loses much of the spatial information about
the hit distribution. For these reasons a single variable has been
used as a measure of the hit position. A more detailed analysis
including angular distributions will be performed when com-
putational resources permit.
In this paper, the competition between geminate pair recom-

bination and scavenging by a cylindrical macromolecule is
investigated. Three techniques are employed: Monte Carlo
random flights simulation,19 a modification of the independent
reaction times (IRT) model,19 and an analytical formulation
using a stochastic master equation.20 The IRT model is an
efficient and accurate stochastic simulation technique, and the
master equation takes the form of a set of coupled differential
rate equations describing the evolution of the probability
distribution for the system, which have to be solved numerically.
These models have demonstrated that the independent pairs
approximation is successful for describing spur kinetics.19,21,22

Reformulations of both techniques to analyze the spatial
distribution of hit positions on a cylinder are also reported.
The following section deals with the random flights simula-

tion, section 3 details the necessary alterations to the IRT model,
and section 4 describes the modified master equation. The three
methods are tested by comparison with the analytic solution
for the diffusion-controlled reaction of a single particle with an
absorbing cylinder, which is well-known.23 The results are

discussed in section 5. One interesting feature of the results is
that hit positions are slightly further apart in the random flights
simulation than the predicted by the independent pairs ap-
proximation. The origin of this three-body correlation effect
is considered in section 6, and modifications of the IRT model
to correct for its effects are presented. The final section contains
a summary of the conclusions.

2. Random Flights Simulation

The random flights technique used in this paper for the
simulation of the trajectories of diffusing particles is essentially
equivalent to the diffusion approximation and has been described
in detail elsewhere.19,20,24 Time is divided into discrete steps,
during which each particle undergoes a normally distributed
random flight with a mean determined by any interparticle forces
present and a standard deviation determined by the diffusion
coefficient of the particle. This method is similar to the
Brownian dynamics technique described by other authors25-27

except in the detailed treatment of the boundary behavior. Here,
methods of conditional probability are used to calculate the
probability of an encounter occurring during a time step, given
the positions of the particles at the start and the end of a time
step.24

2.1. Modifications to the Random Flights Simulation. The
introduction of an absorbing cylinder brings no great complica-
tion to the procedure used to model spur kinetics. The cylinder
is assumed to be static, and its presence does not affect the
diffusion of the radicals. The only necessary alterations to the
reported method involve modeling the reaction with the cylinder
and the calculation of the variable time step. Reaction with
the cylinder is taken to occur with probability one during a time
step if the radical encounters it. Encountermusthave taken
place if a radical occupies a reactive configuration (i.e., is found
inside the cylinder) at the end of a time step. However, as
argued elsewhere,24 the use of this criterion alone underestimates
the reaction rate because there is a nonzero probability that a
radical occupying unreactive configurations at the start and the
end of the time step has encountered the cylinder and reseparated
during the step. This probability can be calculated by the
method of ref 24, but for the problem of reaction with a cylinder,
evaluation of the solution requires an infinite integral of ratios
of zero-order Bessel functions (see section 3), which is too
computationally expensive to use at every time step. In
consequence, an approximate method is used, which is accurate
if the time step is short enough that the radial drift of the radical
relative to the cylinder is approximately constant.20,24 In the
case of interest, the instantaneous radial drift takes the value
D/r, whereD is the radical diffusion coefficient andr is the
distance from the radical to the axis of the cylinder. The time
step is calculated such that there is 95% confidence that the
radial drift changes by less than 10% during the time step. In
this way, the conditional reaction probability calculated from
the Brownian bridge can always be used24

wherer0 and r are the distances from the cylinder axis at the
start and end of the time step (δt), respectively, anda is the
radical-cylinder encounter distance.
The radical-radical distances are also used to calculate time

steps in order to avoid the possibility of radicals jumping through
one another, according to the procedure described in detail
elsewhere.24 Finally, the time step chosen is the minimum of
all the time steps calculated, i.e., after consideration of each
radical-cylinder distance and each radical-radical distance.

Wa(r0,r,δt) ) 1- exp[-(r0 - a)(r - a)/Dδt] (1)
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The simulation is followed, either until reaction is complete
or until a preset cutoff time is reached. Each simulation provides
very little information about the kinetics of interest, yielding
simply a series of reactions, the times at which they occur, and
the coordinates of the hits on the cylinder, which are modeled
in the same way as for reaction with a plane surface.16 The
coordinates of the hits are recorded in cylindrical polar
coordinates, with thez-axis along the axis of the cylindrical
target. Thus the axial coordinate of the hit is thez-coordinate.
Many independent realizations are necessary to obtain statisti-
cally significant results.
2.2. Tests of the Simulation Method.Since the modeling

of reaction involves some approximation, it is necessary to test
the simulation against a system whose exact solution is known
within the diffusion approximation. Such tests have been
reported for several other systems in the past.20,22 In this case
the appropriate system to test is that in which a single radical
is generated at a fixed distance,r, from the axis of the cylinder.
This problem reduces to two-dimensional diffusion with a
circular absorbing boundary. The solution for the time-
dependent survival probability has been known for many years
in the theory of heat conduction23

where J0 and Y0 are Bessel functions.28 Figure 1 shows
comparisons of the time-dependent probability of reaction
simulated by the random flights method together with the
analytical solution calculated from eq 2. It can be seen that
agreement is excellent.
It is also possible to calculate the density of thez-coordinate

where the hit takes place. Diffusion in thez-direction is
independent of diffusion in thex- andy- (or r- andθ-) directions.
The time at which the hit takes place is determined entirely by
the diffusion in the “sideways”r-coordinate. But during this
time thez-coordinate is diffusing independently. Thus if the
hit takes place at timeT, the conditional density of the hit
position is a normal distribution with mean equal to the initial
z-coordinate,z0, and variance2DT. To obtain the marginal

density of the hit position, irrespective of the hitting time, it is
necessary to convolute the normal distribution over the density
of the hitting time, giving

A comparison is shown in Figure 2, from which it can be
seen once again that the simulation is in excellent agreement
with the analytical result. The mean hit position is zero, as
expected, but all higher moments are infinite. This will now
be demonstrated analytically.
Consider the variance of the hit position. If the probability

density function of the first-passage time to the cylinder is
denotedw(r,a,t), the variance of the particle displacement in
the z-direction at the hit time is

After interchanging the order of the integration, this becomes

Since the expectation time to hit the cylinder is infinite, the
variance of the hit position is also infinite.
The preceding result needs to be verified more carefully since

the integrals are clearly not uniformly convergent. This may
be done using the following artifice. A plane tangential to the
cylinder and perpendicular to the initial particle position vector
is constructed. The particle must pass through this plane before
hitting the cylinder. The probability distribution of thez-
coordinate of hits on the cylinder must therefore be wider than
the distribution of hits on the plane. However, it is well-known
that thez-coordinate of hits on the plane follows a Cauchy
distribution29

wherer is the initial perpendicular distance of the particle from
the plane. This distribution has a mean of zero and an infinite
variance. Since the variance of hits on the cylinder may not

Figure 1. Diffusion-controlled reaction probability of a particle with
an infinite cylinder. The solid line is the analytic solution, eq 2, the
dotted line is the prediction of the IRT model, and the open points are
the results of random flights simulation.D ) 2.8× 10-9 m2 s-1, r )
2.28 nm, andacylinder ) 1.28 nm.

W(r,a,t) )

1- 2
π∫0∞

Y0(ur)J0(ua) - J0(ur)Y0(ua)

J0
2(ua) + Y0

2(ua)
exp[-u2Dt] du

u
(2)

Figure 2. Probability density of thez-coordinate of the hits of a radical
on a cylinder. Key as in Figure 1.

p(z) )

1
π∫0∞

Y0(ur)J0(ua) - J0(ur)Y0(ua)

J0
2(ua) + Y0

2(ua)
exp[-|z- z0|u] du (3)

σ2 )∫∞-∞∫0∞ w(r,a,t) z2 exp[-z
2/4Dt]

(4πDt)1/2
dt dz (4)

σ2 ) 2D∫0∞ t w(r,a,t) dt (5)

p(z) ) r

π(r2 + z2)
(6)
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be smaller than this, it must also be infinite, verifying the
conclusion above. Furthermore, the expectation of the absolute
displacement in thez-direction must also be infinite for the same
reason. It is therefore not sensible to use the simulated data to
evaluate moments, either of the hit positions or of the distances
between hit positions (apart from the mean). The values
obtained will simply reflect the maximum cutoff time in the
simulation.

3. The IRT Method

The IRT (independent reaction times) method is a fast
simulation method based on the independent pairs approximation
and has been described in detail elsewhere.19 A random reaction
time is generated for each reactive pair in the system, using the
correct marginal probability density conditional on the initial
separation of the pair. The first reaction takes place at the
smallest time generated, the second reaction occurs at the
smallest time generated for the pairs of particles surviving the
first reaction, and the procedure continues until reaction is
complete or until all remaining times are greater than the
predetermined cutoff time.
The IRT method cannot be implemented unless random

encounter times can be generated from the appropriate prob-
ability density. For reactions between spherical radicals the
cumulative probability distribution is

wherer is the initial separation,a the encounter distance, and
D′ the relative diffusion coefficient. The random times are
generated from this nonuniform distribution by the inversion
method,30 using the inverse error function algorithm given in
Abramowitz and Stegun.28

For reaction between a radical and a cylinder the appropriate
probability distribution is given in eq 2. Note that a separate
probability distribution is needed for every different value ofr.
In the absence of a simple method of inverting this function, a
numerical method was used similar to that described previously
for modeling ionic reactions.22 A grid of percentiles ofW for
various values ofr/awas set up numerically. When a particular
set of parameters is required, the table is interpolated to find
percentiles ofW for those parameters. A random number is
then generated and the numerically generated, inverse function
of W is interpolated to find the time at whichW attains the
value given by the random number generated.
The IRT method also has to be modified to enable the

generation of hit positions on the cylinder. If the hit takes place
at timeT and the initialz-coordinate of the particle isz0, then
the probability density of the hit position is

It is not necessary to simulate using the more complex marginal
density of the hit position, eq 3, because in the IRT method it
is only necessary to generate hit positions when hits occur, so
the hitting time is already known. The required density is that
of the hit position conditional on the known hitting time.
3.1. Tests of the IRT Method. Since a numerical interpola-

tion is used to generate the reaction times for the IRT simulation,
it is necessary to test the numerical accuracy of the simulations
against the exactly known solutions for the kinetics and the
spatial distribution of hit positions. The same analytical
solutions are used here as for the random flight simulations in

section 2. Comparisons are included in Figures 1 and 2, from
which it may be concluded that the method used for generating
reaction times is accurate and can be applied to systems where
there is competition between spur recombination and scavenging
by the cylinder.

4. The Stochastic Master Equation

The IRT method described above simulates a stochastic
process, which can be analyzed using a master equation. A
general method for formulating a master equation model of
nonhomogeneous radiation-chemical kinetics has already been
presented.20 This approach can be applied easily to the system
under consideration, in which geminate recombination competes
with scavenging by the cylinder.
The random variables of interest in the master equation are

the numbers and types of particles surviving as a function of
time: experiments essentially measure expectations of these
numbers. A state space is therefore defined consisting of all
possible sets of particles remaining. For the system of interest
these states can be itemized as follows:
State 11: both particle A and B remain, no reaction has

occurred yet.
State 10: only particle A remains, particle B has reacted with

the cylinder.
State 01: only particle B remains, particle A has reacted with

the cylinder.
State 00: neither particle remains as they have either

recombined or reacted with the cylinder.
At any given time, the system is characterized by a probability
distribution, which assigns a probability to each of these states.
The master equation is an equation of motion for the probability
distribution; it consists of a set of coupled linear rate equations
that describe the rates of transition between the states listed
above

whereλAB(t), λAC(t), andλBC(t) are time-dependent rate coef-
ficients for the recombination reaction and the two reactions
with the cylinder, respectively. It is only necessary to solve
the first three of these equations sinceP00 is the complement
of the sum of the other three probabilities.
The independent pairs approximation gives a prescription for

the form of the time-dependent rate constantλ(t)15

whereΩ(t) is the survival probability that would pertain for
the pair in isolation, i.e., in the absence of the third particle.
For a given initial configuration, this prescription forλ is
equivalent to the use ofΩ(t) to generate a random reaction time
for the pair in the IRT method. The kinetics predicted by the
master equation should therefore be identical with those
simulated by the IRT method. For the geminate recombination,

W(r,a,t) ) a
r
erfc( r - a

x4D′t) (7)

p(z|T) )
exp[-(z- z0)

2/4DT]

(4πDT)1/2
(8)

dP11
dt

) -λAB(t)P11(t) - λAC(t)P11(t) - λBC(t)P11(t) (9)

dP10
dt

) λBC(t)P11(t) - λAC(t)P10(t) (10)

dP01
dt

) λAC(t)P11(t) - λBC(t)P01(t) (11)

dP00
dt

) λAB(t)P11(t) + λAC(t)P10(t) + λBC(t)P01(t) (12)

λ(t) ) -d(lnΩ(t))/dt (13)
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λAB(t) is obtained by differentiating eq 7, and the rate constants
for the cylinder reaction are obtained by differentiating eq 2.
4.1. Spatial Distribution. The master equation formulation

described above can be modified to include the density of hit
positions on the cylinder. As before, only thez-coordinates of
the hits are considered. The state of the system is now specified,
not only by the numbers and types of each particle remaining,
but also by thez-coordinates of any hits that have taken place.
For example,P10(zB) denotes the probability density that the A
particle remains and that the B particle hit the cylinder at
positionzB. Similarly, P00(zA,zB) denotes the joint probability
density that both particles have hit the cylinder at positionszA
andzB.
In the independent pairs approximation, thez-coordinate of

a hit of particle A on the cylinder at timet will have a Gaussian
spatial density centered on the initialz-coordinate of particle A
and with variance 2DAt. This normalized Gaussian density will
be denotedgA(zA,t), and similarly forgB(zB,t).
With these extensions the master equation becomes

Although these functions contain all the necessary information
about the spatial distribution of the hits, they are in an
inconvenient form for numerical solution.P00(zA,zB,t) is a
function of two spatial variables, and following spatial discreti-
zation, the numerical solution of the resulting set of differential
equations is likely to be prohibitive because of the large number
of differential equations to be solved. Three simpler functions
are therefore considered: the marginal densities of A and B
hits, pA(zA,t) andpB(zB,t), respectively, and the density of the
distance between the two hits,p(z,t), wherez is defined aszB
- zA. These functions can be defined in terms of those above
by

and they obey the following equations of motion:

Discrete versions of eqs 14-16 and 21-23 are therefore
integrated.
4.2. Test of Master Equation. The master equation was

formulated and run with a simplified system, containing only
one radical and the cylinder, to test the time-dependent rate
coefficient for cylinder hits, which has to be obtained numeri-
cally from eq 13 following the differentiation of eq 2. As
expected, results for both the kinetics and the spatial distribution
of hits are indistinguishable from those obtained by IRT
simulation, since the master equation is the formal description
of the random process simulated by the IRT method.

5. Results

The calculations reported in this section apply the methods
described above to the competition between recombination of
a geminate pair of identical radicals and scavenging of those
particles by reaction with a cylinder. The two radicals are
labeled A and B for convenience. The geminate reaction
distance for the pair,ageminate, is 0.26 nm, the encounter surface
for either particle with the cylinder,acylinder, is 1.28 nm
(measured from the axis of the cylinder), and the diffusion
coefficient for each particle is 2.8× 10-9 m2 s-1. (These
parameters are appropriate for the hydroxyl radical and the DNA
molecule and are used because the OH radical is believed to be
a significant cause of radiation-induced DNA damage.9,10)
The kinetics of the competition between geminate recombina-

tion and scavenging by the cylinder are examined in Figure 3.
The three configurations considered differ only in the distance
between the surface of the cylinder and the center of the
geminate pair (i.e., the midpoint between the radicals),r′ )
0.5, 1.0, and 3.0 nm. In each simulation, the initial coordinates
of the two particles relative to the center of the pair were
obtained by sampling from independent, identical, spherical
Gaussian distributions, scaled to give a mean interparticle
distance of 0.5 nm. The kinetics of the geminate reaction and
of the encounters between the particles and the cylinder are
qualitatively different, even when the geminate pair is close to
the cylinder. The geminate reaction takes place on a signifi-
cantly shorter time scale than the scavenging of the particles
by the cylinder. This difference is obvious at the largest
cylinder-pair separation considered,r′ ) 3.0 nm, where there
are two distinct components to the decay kinetics. For all initial
distances, the long-time asymptotics of the geminate reaction
and the (cylinder) scavenging reaction are qualitatively different.
The survival probability of a geminate pair diffusing in three
dimensions has an asymptotic time dependence oft-1/2, while
the scavenging by the cylinder has an asymptotic time depen-
dence of 1/ln(t), as the relative diffusion is effectively in two
dimensions. Furthermore, there is a nonzero probability that a
geminate pair will escape recombination for all time, but the
ultimate reaction of a radical with the cylinder is certain.
For each separation considered in Figure 3, the agreement

between the results of the IRT and random flights simulations
is good, although there are some minor discrepancies in the
predictions for the yields of the two different reactions when
the scavenging competes effectively with recombination. Under
these conditions, where the interparticle distance andr′ are
comparable, the IRT model slightly underestimates the yield
of geminate reaction and overestimates that of particle-cylinder
reactions. There is no apparent difference in the decay kinetics
predicted for the geminate pair by the two simulation methods
as the errors in the yield of the geminate and the scavenging
reactions approximately cancel one another. As the separation
between the surface of the cylinder and the center of gravity of

dP11
dt

) -λAB(t)P11(t) - λAC(t)P11(t) - λBC(t)P11(t) (14)

dP10(zB,t)

dt
) λBC(t)P11(t)gB(zB,t) - λAC(t)P10(zB,t) (15)

dP01(zA,t)

dt
) λAC(t)P11(t)gA(zA,t) - λBC(t)P01(zA,t) (16)

dP00(zA,zB,t)

dt
)

λAC(t)P10(zB,t)gA(zA,t) + λBC(t)P01(zA,t)gB(zB,t) (17)

pA(zA,t) ) P01(zA,t) +∫-∞

∞
P00(zA,zB,t) dzB (18)

pB(zB,t) ) P10(zB,t) +∫-∞

∞
P00(zA,zB,t) dzA (19)

p(z,t) )∫-∞

∞
P00(zA,z+zA,t) dzA (20)

∂pA(zA,t)

∂t
) λAC(t)P11(t) + λAC(t)P10(t)gA(zA,t) (21)

∂pB(zB,t)

∂t
) λBC(t)P11(t) + λBC(t)P01(t)gB(zB,t) (22)

∂p(z,t)
∂t

) λAC(t)∫-∞

∞
P10(zB,t)gA(zB-z,t) dzB +

λBC(t)∫-∞

∞
P01(zA,t)gB(zA-z,t) dzA (23)
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the geminate pair is increased, the differences decrease, so that
when r′ ) 3.0 nm, the kinetics given by the random flights
simulation and by the IRT model are indistinguishable.
The distributions of the positions of the A and B particle

hits on the cylinder for a pair with center 1.0 nm from the surface
of the cylinder (cf. Figure 3b) are presented in Figure 4, and
appear to be identical. These distributions are centered on the

z-coordinate of the pair center,z′ ) 0. Figure 5 shows the
distribution of the relative displacement of the hits,zB - zA,
for the same system. While the distributions of the hit positions
of the A and B particles obtained using the two simulation
methods appear to be equivalent, there is a discrepancy in the
distribution of the interhit distance. The IRT model gives a
narrower distribution than the random flights simulation,
overestimating the number of small interhit displacements and
underestimating the number of large interhit displacements. For
these Gaussian pairs, the differences are not great, for example,
the median absolute interhit distance predicted by random flights
simulation is 2.1 nm, while the IRT model gives a median of
2.0 nm.
As clustered damage to biologically significant macromol-

ecules such as DNA may arise from correlated hits of radicals
originating from the same spur, any discrepancy between the

Figure 3. Competition kinetics between geminate recombination and
reaction with a cylinder. The lines are the predictions of the IRT model,
and the points are the results of random flights simulation. The particle
coordinates were sampled from Gaussian distributions ofσ ) 0.31 nm,
centered at a distancer′from the surface of the cylinder.DA ) DB )
2.8× 10-9 m2s-1, r′) 1.0 nm,ageminate) 0.26 nm, andacylinder ) 1.28
nm. (a)r′) 0.5 nm, (b)r′) 1.0 nm, (c)r′) 3.0 nm.

Figure 4. Density of A and of B hit positions on the cylinder in
competition with geminate recombination. The lines are the predictions
of the IRT model, and the points are the results of random flights
simulation. The filled points and solid line refer to particle A, and the
open points and the dashed line (masked by the solid line) refer to
particle B. The particle coordinates were sampled from Gaussian
distributions ofσ ) 0.31 nm centered at a distancer′) 1.0 nm from
the surface of the cylinder.DA ) DB ) 2.8× 10-9 m2s-1, ageminate)
0.26 nm, andacylinder ) 1.28 nm.

Figure 5. Density of the interhit distance in the competition between
geminate recombination and reaction with a cylinder. The line is the
prediction of the IRT model, and the points are the results of random
flights simulation. The particle coordinates were sampled from Gaussian
distributions ofσ ) 0.31 nm centered at a distancer′ ) 1.0 nm from
the surface of the cylinder.DA ) DB ) 2.8× 10-9 m2s-1, ageminate)
0.26 nm, andacylinder ) 1.28 nm.

Geminate Recombination and Reaction J. Phys. Chem. A, Vol. 102, No. 4, 1998735



IRT and random flights methods warrants further examination.
This has been achieved by using fixed configurations rather than
random distributions for the initial state of the pair. The effect
of the orientation of the initial interparticle vector with respect
to the axis of the cylinder is considered in Figures 6 and 7. In
both sets of calculations, the initial separation of the pair was

0.5 nm and the pair was centered 1.0 nm from the surface of
the cylinder. In Figure 6, the initial interparticle vector was
parallel to the cylinder axis. As the two particles are initially
equidistant from the cylinder, their kinetics are indistinguishable
and the distributions of the A hits and the B hits are mirror
images about thez-coordinate of the pair center,z′. For this
parallel configuration, the kinetics predicted by the IRT model
and by random flights simulation are in good agreement.
However, there is a significant discrepancy in the distributions
of the hit positions. The difference is quite significant: in the
IRT simulation the most probable interhit displacement is
necessarily 0.5 nm, but in the random flights simulation it is
0.85 nm.
Figure 7 examines the reactions of a geminate pair whose

interparticle vector is perpendicular to the cylinder axis in a
radial direction, with the A particle closer to the cylinder than
the B particle. As before, the initial separation of the pair is
0.5 nm and the pair is centered 1.0 nm from the cylinder. At
short times the decay kinetics of the two radicals are similar,
as they are dominated by geminate reaction. As time proceeds,
the scavenging of A by the cylinder takes place more rapidly
than that of B, with the result that the hit distributions for A

Figure 6. Effect of orientation angleθ on competition between
geminate recombination and reaction with a cylinder,θ ) 0. The solid
lines are the predictions of the IRT model, and the open points are the
results of random flights simulation. The dashed line denotes the
predictions of the modified IRT model. The center of the pair was a
distance r′ ) 1.0 nm from the surface of the cylinder, and the
interparticle distance was 0.5 nm.DA ) DB ) 2.8× 10-9 m2s-1, ageminate
) 0.26 nm, andacylinder ) 1.28 nm. (a) Kinetics, (b) density of A and
B hit positions, (c) density of interhit displacement.

Figure 7. Effect of orientation angleθ on competition between
geminate recombination and reaction with a cylinder,θ ) π/2. The
lines are the predictions of the IRT model and the points are the results
of random flights simulation. The filled points and solid line refer to
particle A, and the open points and the dashed line refer to particle B.
The center of the pair was a distancer′ ) 1.0 nm from the surface of
the cylinder, and the interparticle distance was 0.5 nm.DA ) DB ) 2.8
× 10-9 m2s-1, ageminate) 0.26 nm, andacylinder) 1.28 nm. (a) Kinetics,
(b) density of A and B hit positions.
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and B are very different. Both are centered aboutz′, the initial
z-coordinate of the pair, but the distribution for B is broader
than that for A, reflecting its greater initial separation from the
cylinder.
Comparison of the results of the IRT model with those from

random flights simulations for the radially perpendicular con-
figuration, presented in Figure 7, shows small discrepancies,
both in the time-dependent kinetics and in the distributions for
the positions of the particle-cylinder hits. (In Figure 6, when
the pair was parallel to the cylinder, the discrepancy in the
kinetics was much smaller.) The IRT kinetics are too slow for
the A+ cylinder reaction and too fast for B. The error seems
to reside in the scavenging kinetics, since recombination is
modeled accurately. The IRT hit distributions show corre-
sponding discrepancies: the distribution of A+ cylinder hits
is too broad, and that for B is too narrow. The distribution of
the interhit distance predicted by the IRT model is shifted to
smaller separations, as was observed for the parallel configu-
ration considered in Figure 6.
5.1. Discussion.The preceding results show that the IRT

method tends to underestimate the distance between the two
hits on the cylinder. This underestimate is most marked for
the initial configuration in which the initial interparticle vector
is parallel to the cylinder axis. There is also a discrepancy in
the kinetics of radical attack on the cylinder, which is most
marked when the pair is initially arranged in a radial direction
relative to the cylinder. In this case, the particle that starts closer
to the cylinder hits more rapidly than predicted by the IRT
method and the other particle hits more slowly.
The observed phenomenon is believed to be a three-body

correlation effect, similar to, but less pronounced than, that found
for reaction with a plane surface.16 The trajectories of the radical
pair can be divided into two classes: (i) those which encounter
one another and end in recombination, and (ii) those which do
not recombine, but where the two radicals are intercepted by
the cylinder. The former class consists of those trajectories
where the radicals tend to diffuse toward one another, whereas
in the latter class the particles tend to diffuse apart. When
examining the distribution of hit positions only trajectories
belonging to the latter class are considered. The limitation to
one class of trajectories induces an apparent repulsion between
the radicals and is the fundamental reason the hits are further
apart than expected when the radical pair is initially parallel to
the cylinder. This effect also accounts for the observed
discrepancies in the kinetics for the perpendicular configuration.

6. A Modified IRT Method

The preceding interpretation can be justified by an ap-
proximate analysis of the “conditioning” effect, which has been
incorporated into a modified IRT simulation method. The
treatment is easiest for the parallel case and consists of finding
thez-coordinates of the two particles at the time the first radical
hits the cylinder. The strategy is for the simulation to proceed
as normal until the first hit timeT1. At this time the interparticle
distance,r, is generated at random from a probability distribution
function conditional on the particles not encountering one
another. Thez-component of the interparticle vector is then
found by generating, conditional on the value generated forr,
a random orientation angleθ for the vector relative to the
original orientation (parallel to thez-axis). Thez-displacement
is then r cos θ. This displacement is combined with the
z-coordinate of the diffusive center of gravity to give the
z-coordinates of the two particles at the instant of the first hit,
T1. The coordinate of the reacting particle is the hit position.

The z-coordinate of the second hit (atT2) is a normally
distributed random variable of variance2D(T2 - T1), centered
on thez-coordinate generated for the particle atT1.
6.1. Interparticle Separation. The pairs in which both

particles hit the cylinder are those pairs that do not recombine.
Consideration is therefore limited to those pairs that would never
recombine in the absence of the cylinder. This class is more
restrictive than the class of pairs that do not recombinebefore
hitting the cylinder. However, Figure 3 shows that, unless the
pair is initially close to the cylinder, the kinetics of recombina-
tion and scavenging take place on different time scales and so
it is an acceptable approximation to restrict the trajectories in
this way.
The probability density function of the interparticle separation,

conditional on the pair never attaining the encounter radiusa,
can be calculated by standard techniques of probability theory.31,32

According to Bayes’ rule,33 the probability density of the
interparticle separation, conditional on the first-passage time to
a being infinite and the initial particle separation beingr0, is

Here,P(Ta ) ∞|r,t;r0) signifies the probability that an encounter
at separationawill never occur if the pair separation is initially
r0, and the pair subsequently diffuses without reaction tor at
time t. pa(r,t|r0) is the probability density for transition from
r0 at time 0 tor at t without hittinga in between; i.e.,pa is the
Green’s function for the diffusion with a Smoluchowski
(absorbing) boundary condition ata. Application of the Markov
property34 and the time homogeneity of the diffusion35 gives

Substitution of well-known results17 for the escape probability
P and the densitypa yields the explicit form

This is the transition density for a three-dimensional Bessel
process (the radial part of three-dimensional Brownian motion)
with the origin translated by a distancea. The origin shift keeps
the process away from the encounter distance. The result above
can also be derived by showing that the conditioned density
obeys a normal three-dimensional radial diffusion equation with
the origin shifted. The recipe for generating a random distance
from this distribution is simple: generate three normally
distributed random numbers with variance 2D′t, one (N1) with
meanr0 - a and the other two (N2 andN3) with mean zero.
The resulting random variable

has the correct probability distribution.
6.2. Orientation and Interparticle Vector. The preceding

analysis gives the probability density function of the interparticle
distance at any given time, including the time of the first hit on
the cylinder. However, it does not give thez-coordinate of the
first hit on the cylinder. To calculate this, thez-coordinates of
the interparticle vector and of the diffusive center of gravity of
the pair are required. Thez-coordinate of the interparticle vector

p(r,t|r0;Ta ) ∞) ) pa(r,t|r0)
P(Ta ) ∞|r,t;r0)
P(Ta ) ∞|r0)

(24)

p(r,t|r0;Ta ) ∞) ) pa(r,t|r0,0)
P(Ta ) ∞|r,0)
P(Ta ) ∞|r0,0)

(25)

p(r,t|r0;Ta ) ∞) )
1

x4πD′t( r - a
r0 - a) (e-(r-r0)2/4D′t - e-(r+r0-2a)2/4D′t) (26)

R) a+ (N1
2 + N2

2 + N3
2)1/2 (27)
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can be obtained from the probability density of the orientation
of the interparticle vector at the time of the hit conditional on
the initial interparticle vector and the final interparticle distance,
i.e.

The numerator is the three-dimensional transition density in
spherical polar coordinates for free diffusion from (r0, 0, 0) to
(r, θ, φ), and the denominator is the integral of this over the
angular variables, representing the marginal transition density
of the interparticle distance. Using the known Green’s function
for three-dimensional free diffusion gives the density

where θ is the azimuth angle between the cylinder and the
interparticle vector. This analysis is approximate since the
densities should be constrained not to encounter beforet.
However, as the particles have already been repelled from each
other by generating the separation distance from the conditioned
distribution, eq 26, this approximation is not important. The
angleφ is therefore uniformly distributed between 0 and 2π,
and cosθ can be generated conveniently by the inversion
method.30 Thez-coordinate of the interparticle vector is simply
r cosθ.
6.3. Diffusive Center of Gravity. The interparticle vector

is not sufficient to fix the absolutez-coordinates of the two
particles at the time of the first hit. To do this, another linearly
independent combination of the position vectors is needed. The
most convenient combination is the diffusive center of gravity
of the pair. This vector is statistically independent of the
interparticle vector,19,24 which means that it is unaffected by
conditioning that the pair never encounter. IfR1 andR2 are
the two position vectors, the diffusive center of gravity is

The displacement of the vector,S, from its initial position at
timeT1 follows a spherical normal distribution whose Cartesian
components are independent normal random variables with mean
zero and variance 2D1D2T1/D′. Once thez-component of the
center of gravity is generated in this way, it can be combined
with the z-component of the interparticle vector to regain the
z-coordinates of the individual particle position vectors.
The effect of the modification to the IRT program described

in this section is shown in the results that are included in Figure
6. The probability distribution function for the interhit distance
is accurately modeled, but there are still small errors in the
distributions for the positions of the hits predicted by the
modified IRT model. The remaining differences between the
distributions for the hit positions reflect an error in the
positioning of the first particle-cylinder reaction in the IRT
model and the modification reported correctly accounts for the
effects of the three body correlation on the interhit distance.

7. Summary

The competition between geminate recombination and the
reaction of the particles with a cylindrical macromolecule has
been examined using random flights and IRT Monte Carlo
simulations. The IRT model was reformulated to include
reactions with a cylindrical macromolecule, and a methodology

was developed for estimating the locations of the reactions on
the molecule. The agreement between the kinetic predictions
of the two simulation techniques is good. There is no
discrepancy in the modeled decay kinetics; however, there is a
small underestimate in the ratio of the geminate reaction to the
macromolecule reaction when the separations between the
geminate pair and the distance between the pair center and the
surface of the cylinder are similar. This discrepancy is much
smaller than that found for reaction with a plane surface.
A more significant, but still minor, discrepancy is found in

the distribution of the interhit distance predicted by the IRT
model. The distribution given by the IRT model is shifted to
smaller distances than that obtained from random flights
simulation. The differences between the results of the IRT and
random flights techniques arise from a three-body correlation
effect, and a modification to the IRT model is presented to
correct for this effect. The recognition of a three-body effect
is of considerable importance, as the correlated reaction of
reactive particles from the same spur with a macromolecule is
believed to be a major cause of radiation-induced damage to
biological systems.
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